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Application to N, Monolayer Melting on Graphite
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Previously developed methods that determine properties of a system
over a range of thermodynamic points, using infermation accumulated
at a single point, are summarized, as is an extension called the multiple
histogram method. These strategies are applied to Monte Carlo calcula-
tions of melting for N, adiayers on graphite. The resufts are used to
show the utility of the multiple histogram method and the inadequacy
of the single point method for this application to a physical system.
@) 1993 Academic Press, [nc. ’

L. INTRODUCTION

It has been shown [1-47] that information from a single
thermodynamic point of a Monte Carlo simulation can
provide valuable knowledge about neighboring points.
These works examined the thermodynamic properties
of liquid argon [1], the Ising model near the critical point
[2,37. and a generic Lennard-Jones crystal below 75% of
the melting temperature [4]. The results were promising.
It is noted that the breadth and accuracy of the probability
distribution at a point influences the magnitude of the
neighborhood around it, where reliable data can be
obtained. If this is insufficient, the authors [3] have
formulated a method, where calculations are performed at
multiple points, that extends the range over which accurate
information can be attained. Here the overlapping distribu-
tion between neighboring points enhance the quality of the
calculated probability over the entire range of interest.
Indeed, Bowen er /. [5] have demonstrated this feature in
studying the results from an Ising model.

In this work we report on an application of the above-
mentioned strategies to a physical system, namely the
melting of fractional and monolayer deposits of N, on
graphite. It will be shown that information from single
Monte Carlo points is insufficient to characterize the entire
transition region, but multiple points do provide a prudent
strategy for calculating properties of the phase transition.
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II. THE PHYSICAL MODEL

Monolayers of molecular nitrogen deposited on graphite
are known to form an in-plane herringbone orientational
structure at low temperatures, with the molecular centers
forming a triangular \/5 X ﬁ arrangement [67], commen-
surate with the substrate lattice. At a temperature 7' >~ 27 K,
the N, molecules undergo an orientational order—disorder
transition [7], but the mass center lattice positions are
undisturbed until melting [6, 8, 9] at ~ 85 K. The work
presented here is part of a study of the melting transition for
N, surface densities 0.2 < p < 1.0, where the upper limit
corresponds to monolayer coverage.

The N,-N, interactions are given by our site-site
representation of ab initio results [10], and calculations on
bulk fluid and solid N, indicate that it is quite accurate. The
N;-substrate interactions inciude the overlap—van der
Waals terms, expressed using the Fourier decomposition of
Steele [ 117, the image charge, and the substrate mediated
dispersion terms. This expression has also proved to be
quite satisfactory. Details are given in Ref. (12).

III. THE HISTOGRAM METHOD

To see how the probability distribution at one point ¢an
be used to determine it at another point, recall that for a
canonical ensemble

PyE)= Ny(E)ny= W(EYexp[ —BE+ /1, (1)
where the probability distribution is P,(E), the temperature
1s f=(kT)~', W(E) is the density of states at energy E, and
F=f/# is the Helmholtz free energy. In a Monte Carlo
calculation N,(E) is the number of configurations in the
interval E to E+ AE out of ng total configurations. Note

that in equilibrium P,4(E) peaks at some energy Ey(f) and
tails off for energies away from this value. It is these tails
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that give information at energies relevant to neighboring
points . Here temperature is used to identify the
thermodynamic points, but other variables may be useful
alternatives. As pointed out by Ferrenberg and Swendsen
[2], Pp(E) is mathematically related to P(E) by the exact
expression

_ Py E)exp[ (8 —BIE]
P = & P By expl(— (F — B ET

{2)

An examination of the numerator shows that P,.(E) is most
accurate when | — f| is small and Py(E) is broad and well
described. Clearly, these are reasonable expectations.

The multiple histogram method [3] is a straightforward
generalization of the above-mentioned arguments. If
Monte Carlo calculations are performed at R different
temperatures, the normalized probability distribution is

P,«(E)=Dﬂ(E)/Z D4(E) (3)

Yo NJ(E)
Zf:l niexpl —{(8,—BYE+ f:]

Dy Ey= (4)

where

%, Dy (E)=exp(— ) (5)

Clearly Eq. {5) is simply the partition function {normaliza-
tion) for P, (E). The free energies { f;},i=1,2, .., R, canbe
determined self-consistently from Eqgs. (3} and (4), or from
the intersection of neighboring histograms {¥,(£)}. That
15,

Py (EYPg, (EYy=exp[ —(f; = fis VE+(fi— fis1)]:

If these distributions overlap, there is one energy E, where

Py (E)= Py, (E). Then
ff—ff+1=(ﬁi_ﬁf+1)E- {6}

It is sufficient to determine the set { f;} to within an additive

constant so one value is set equal to zero and all others are
measured with respect to it.

1IV. APPLICATION TO N, MELTING ON GRAPHITE

The melting of N, monolayers on graphite was examined
using the constant volume, histogram Monte Carlo techni-
que, with individual points calculated at T'=75, 80, 81, 82,
84, 90, and 95 K. A cell with N = 256 molecules and periodic
boundary conditions was used. Between 5x 10° and 10°
steps were performed at each temperature, requiring some
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3500 cpu hours on an IBM 6000 RISC work station. Each
step consists of randomly sampling all 5N degrees of
freedom. Step averages were wsed to calculate various
thermodynamic expectation values and the histograms
N,(E)in Eqs. (1) and (4).

The solid circles, shown on Fig. 1, represent the specific
heat per molecule, in units of the Boltzmann constant,
calculated from the multiple histogram method [3]. The
peak temperature signifies melting at T,, =80.5 K. This
value, the peak height, and the width at hall maximum, are
in good agreement with experiment [ 8, 971. The specific heat
varied negligibly over the last 10° steps, giving confidence
that convergence had been reached. The curve represented
by triangles with the highest peak value is a result of the
single histogram method initiated at 80 K. The specific heat
at this temperature is, of course, identical to the resuits
obtained without the histogram method. Away from this
point the results are a consequence of Eq. (2). The second
triangular curve, initiated at 81 K, is similarly described.
While they show a small signature of the transition, they are
quantitatively inadequate as indicated by their behavior
over the last 10° steps. Values in the vicinity of the transition
show fluctuations almost an order of magnitude larger than
comparable points using the multiple histogram method
and are worse away from the transition and away from the
initiation temperature. The solid circles on the top graph of
Fig. 2 show the internal energy, caiculated from the multiple
histogram method [3]. This curve is believed 1o be quite
accurate because the results are remarkably stable over
the last 10° steps and because the energies calculated at the
seven separate temperatures agree almost exactly with the
multiple histogram [3] results at those points. These points
have a statistical uncertainty in energy of less than 0.5%.
However, the application of these points in the single
histogram method [2], represented by the seven curves
formed from the triangles, do not individually provide
enough information to accurately span the transition
region, a conclusion in concert with that drawn from
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FIG. 1. The solid circles give the calculated specific heat per N,
molecule near melting {rom the multiple histogram {31 method. The
statistical uncertainty in these points is within + 1.0 K. The curves with
triangles are results from the single point histogram method [ 27, based on
calculated points at 80 and 81 K.



N; MELTING ON GRAFPHITE

-1200

-12504

Energy (K}

7 LLLTYVo .-
% 0.4 "“AAA‘ n
E e
£ 04 B
= 0
S [
g 0.2 '
5 ]
.14 :-
.‘nunnunnnuuuu
0 “Ersaan y
70 5 do 8 %0 %

Temperature (K}

FIG. 2. The circles on the top graph give the internal energies
calculated from the multiple histogram method, and the seven curves com-
posed of triangles are results calculated using the single point histogram
method from Monte Carlo runs at each of seven different temperatures.
The bottom graph shows two different order parameters, sensitive to
melting, calculated using the multiple histogram method.

specific heat results. The two curves on the lower graph
of Fig.2 show order parameters sensitive to melting,
calculated from the multiple histogram scheme. The squares
are just the structure factor, evaluated at the reciprocal
lattice vectors of the graphite substrate. It is designed to
equal unity if the molecular centers are all statically located
over the center of a graphite hexagon and zero if they
uniformly sample all locations above the substrate. The
non-zero high temperature tail indicates some preference
for the above-mentioned registry sites above melting. The
triangles represent

N 6
0,= 0NN - 117" T { ¥ explik, ). (0
i<j vs=1

where k, are the reciprocal lattice vectors of the \/5 X \/5
center of mass structure [12], stable at low temperature,
and r;; is the vector connecting molecular centers (i, j). The
brackets indicate a thermal average. It is designed to be
unity for a static \/S x \/5 structure and zero if there is no
vestige of it. The top graph on Fig. 3 shows the same two
order parameters shown on Fig. 2, but plotted against
energy. It is shown to dramatize the energy interval over
which the transition occurs. The bottom graph shows
the probability distributions calculated from the seven
individual points. From left to right the solid curves are for
T=175, 81, 84, and 95K, and the dashed lines are for
T=80, 82, and 90 K. Note that their energy widths at half
maximum are about 20 K outside the transition region and
about 35 K inside.
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FIG. 3. The top graph shows the same order parameters as in Fig. 2,
plotted versus energy. The bottom graph shows the probability distribu-
tions calculated at T=75, 81, 84, and 95 K (solid lines) and at 7= 80, 82,
and 90 K (dashed lines).

Y. SUMMARY AND DISCUSSION

It is understood that both the single and multiple point
histogram methods will accurately represent a physical
system over any finite range of thermodynamic points, given
sufficiently long Monte Carlo sequences. The issue is, there-
fore, relative efficiencies. The advantage of the multiple
point analysis is that neighboring points can be chosen so
that the overlap in the probability distribution between
them is large, indicating that the entire thermodynamic
interval is well sampled. The advantage of the single point
histogram method is that only one distribution need be
calculated and that the total computational expenditure can
be concentrated on it. The problem with this method is that
the probability distribution decreases rapidly away from the
point at which it was taken. The expenditure of computa-
tional effort to accurately determine these tails is large, par-
ticularly if the thermodynamic range of interest is also large.
As for the traditional method of calculating properties at a
number of separate, individual points, this method cannot
be as efficient as the multiple histogram method unless
the points are so separated that their probabilities have
negligible overlap.

It is evident that the single point histogram method is not
satisfactory when applied to the melting of N, on graphite,
as evidenced by the specific heat and energy results on
Figs. 1 and 2. This failure can be understood by examining
the internal energy and probabilities on Figs. 2 and 3. The
energy change across the transition is approximately 80 K,
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but the width of the probability distribution at half maxi-
mum is only about 35 K in the transition region and only
20K on the edge of it. This is simply not enough, even
though as many as 10° steps (10° configurations) were run
at each Monte Carlo point. Note that, at each temperature
at which the distribution was calculated and used inde-
pendently to determine the specific heat, energy, and the
order parameters, the results were consistent with those
from the single histogram method, initiated at each of these
points.

The multipie histogram method has proved to be most
satisfactory for this problem because it accurately charac-
terizes the probability distribution over the entire transition
region, as shown on Fig. 3. Comparing the energies deduced
from this method with those derived from Eq. (2), using the
single point histograms, Fig. 2 shows that the resulits are
quite different. However, at the temperature about which a
distribution is generated, the average energy determined by
both methods differs by less than 1%. Away from this
temperature the results become increasingly dissimiiar.
Qualitatively similar results occur for single point
histograms generated at all different temperatures, as is
evident on Fig. 2. The order parameters behave in the same
way. However, the two methods do not give comparable
specilic heats anywhere, as evidenced on Fig. 1. One couid
have guessed this by examining the energies on Fig 2.
Such a result is not surprising since the specific heat is a
fluctuation quantity, the solution of which requires high
statistical accuracy.
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Finally, there are difficulties in applying this method to
an actual physical system that do not occur for model
systems, where exact solutions are already known. The
primary problem is that a priori knowledge about the
optimal location of Monte Carlo points to be used is
generally not available, nor is the range of energics that
must be sampled to span the transition. The multiple point
analysis helps to ameliorate this problem and we conclude
that it is a valuable and economical tool.
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